

Empowering Programmability for
Tangibles

Abstract
Programming microcontrollers for tangible interfaces
can be easier and more accessible than it is now,
empowering a broader audience to participate. The first
part of this studio will introduce participants to Scratch
for Arduino, a graphical programming language for
controlling the Arduino hardware platform. The
participants will form small groups to create projects
using the Arduino in combination with a kit of input and
output devices, and program their creations’ behavior
using Scratch for Arduino. In the second part of the
studio, participants will have a chance to get under the
hood of the Scratch for Arduino language and its
underlying blocks engine, modifying it or extending it to
work with other tangible kits. We will close with a
discussion about participants’ experiences using and
modifying Scratch for Arduino and the blocks engine,
comparing them to other environments and considering
possibilities for future work and collaborations.

Keywords
Graphical programming, empowerment, Arduino,
Scratch

ACM Classification Keywords
K.3.1 Computer Uses in Education

Copyright is held by the author/owner(s).

TEI 2010, January 25-27, 2010, Cambridge, MA, USA

ACM

Eric Rosenbaum
Lifelong Kindergarten Group
MIT Media Lab
77 Massachusetts Ave.
Cambridge, MA 02139

Evelyn Eastmond
Lifelong Kindergarten Group
MIT Media Lab
77 Massachusetts Ave.
Cambridge, MA 02139

David Mellis
High-low Tech Group
MIT Media Lab
77 Massachusetts Ave.
Cambridge, MA 02139

 2

Introduction
The group of people who are able to design and
fabricate tangible interfaces is rapidly expanding, as the
construction kits and design tools become more
accessible. Hardware toolkits are rapidly appearing to
fill a variety of niches. These include different
combinations of low cost kits, open-source hardware,
and specific audiences such as children, crafters,
robotics hobbyists, and designers. Some examples are
the Arduino [10], Lilypad [2], Phidgets [1], Makeboard
[3], Gainer [4], LEGO Mindstorms [5], PicoCrickets [6],
LogoChip [7], Sunspots [8], and D.tools [9]. The
software environments for these kits are also
diversifying, including a variety of programming
languages, including wrappers for easier use of high
level textual languages (such as the arduino
programming environment), graphical environments
(such as the software for LEGO Mindstorms,
PicoCrickets, and LogoChip), and visual hardware
design environments (such as Fritzing [11]).

In spite of this diversification, there is an open niche for
a flexible toolkit with a programming environment that
is both powerful and truly accessible to novices.
Scratch for Arduino aims to fill this niche.

Scratch for Arduino is based on the Scratch
programming environment [14]. Scratch allows people
of all ages to create their own animations, games and
interactive stories and share them on the web. In
Scratch, you program by snapping together graphical
blocks on the screen. The Scratch for Arduino
environment uses the a very similar set of
programming language metaphors as are used by
Scratch, and they combine to make a powerful and

flexible language that is easy for beginners to get
started with.

A few other efforts are underway to use scratch-like
programming to create an accessible programming
environment (e.g. Modkit [12], Catenary [15], and
Amici [13]). We see our work as complementary to
these other efforts.

A graphical syntax that prevents errors
In the Scratch paradigm, each block represents a
command that causes a character on the screen to do
something like move, change color or make a sound.
The graphical syntax illustrates which blocks can
connect to each other and in what ways. For example,
the blocks have tabs and slots at top and bottom,
showing that they connect top to bottom to execute in
sequence. They also have holders for arguments,
which are rectangular for text, rounded for numbers,
and hexagonal for true/false inputs. Blocks that output
a value of a particular type have that shape and can
only fit into a holder of that type. Because of these
constraints, it is impossible to construct a program that
is syntactically incorrect. Syntax errors, common in
almost any other language, are frustrating and
demotivating for beginners. By preventing these syntax
errors altogether, we hope to create a much smoother
learning process. Scratch for Arduino shares this same
graphical syntax.

Tinkerability for real-time feedback
By tinkerability we refer to the ability to try out
changes and see the results rapidly in real-time. While
a Scratch program runs, you can modify it, re-
arranging the blocks or changing parameters. There is
an option to show the blocks highlighting as they

 3

execture, and to view the value of any variable in real-
time, so you can see exactly how your program is
behaving as it runs. Scratch for Arduino has this same
property of tinkerability.

Parallel processes
Programs in Scratch typically consist of several stacks
of blocks which execute in parallel. This means there is
an implicit use of multi-threading. Multi-threading is
typically introduced as an advanced programming
concept, but it aligns well with people’s intuitions about
how things in the world behave: objects, and especially
creatures, have multiple behaviors and sub-systems
that operate simultaneously. As a feature of Scratch it
enables people to create complex behaviors easily.
Parallel processes are unusual in microcontroller
programming, especially for beginners, but this is
mainly due to the nature of the programming
environments that have been used. Scratch for
Arduino takes of advantage of people’s intuitions about
parallel processes to enable them to create more
complex behaviors for their creations.

Physical linked to virtual
In the Scratch for Arduino environment, the physical
setup of the Arduino and the inputs and outputs
connected to it can be linked to the representation on
the screen. This link enables the programming to be
simplified. The details of what is connected where are
handled in a graphical configuration (for example, to
show that an LED is connected to pin 7, the user would
drag an icon of an LED to that pin on a representation
of the Arduino). Rather than controlling settings for
pins, the graphical blocks can express behaviors for
particular inputs and outputs (for example, the block
would say “LED on,” and internally it would set pin 7).

A framework for blocks-based languages
Scratch for Arduino is just one instance of a wide range
of possible graphical programming languages based on
the Scratch paradigm. We are developing a framework
based on Flash Actionscript 3.0 that allows people to
easily create and customize their own blocks
languages.

A path out of the sandbox
One of the major advantages of building this system on
top of the existing Arduino platform is that we will be
able to provide people a way to transition, as they
become more advanced, away from Scratch for Arduino
and into the more general purpose, lower-level
platform, which is well-supported with a worldwide
community.

Studio Pre-requisites
We will aim to accommodate a wide variety of skill and
comfort levels with both programming and electronics.
The Scratch for Arduino programming environment is
designed for novices and should make it easy for
anyone to get started, but it also has a high ceiling of
complexity for those more experienced to explore. The
Arduino electronics toolkit, with a set of easily
pluggable inputs and outputs, should make it possible
for beginners in electronics to get up to speed quickly,
but the full range of electronics exploration will be
available. In the second portion of the workshop,
where participants will extend and modify the blocks
language, more programming skill will be useful, but
we expect that participants will work in groups and
share expertise.

 4

Studio Topics
The studio will be divided into two parts. Part one is
exploring Scratch for Arduino, and part two is
modifying and extending it. In part one, we will give an
introduction to the Scratch for Arduino software system
and the associated physical toolkit, consisting of the
Arduino with a set of input and output devices.
Participants will have hands-on time to experiment with
the system, develop a simple project and present it to
the group, along with the reflections on the use of the
system. Part Two will involve a more detailed look at
the programming environment, and an investigation of
its underlying software. We will get the participants set
up to program in the Adobe flex environment so they
can try out modifying the Scratch for Arduino code.
They can start with the Scratch blocks engine and
connect it to another hardware or software toolkit of
their choice. Finally, we close with a conversation in
which participants reflect on their experiences using
Scratch for Arduino and then extending and modifying
it. We will talk about future directions, including
possible collaborations on graphical programming
environments, and more generally the research
endeavor of creating more accessible and empowering
programming environments for tangibles.

Studio Learning Goals
We expect participants to learn how to use the Scratch
for Arduino software to program a tangible system, and
begin the process of learning how to modify and extend
it. We also expect participants to engage in a reflective
conversation about the space of hardware and software
toolkits for tangibles, their different properties as they
relate to accessibility and empowerment, and future
possibilities for new toolkits.

Studio Supporting Web Documents
We plan to create a website in advance of the
workshops that participants can use to access the
Scratch for Arduino software, and get set up to use and
modify it using the Adobe Flex Builder environment.

References
1. Phidgets Inc. - Unique and Easy to Use USB
Interfaces. http://www.phidgets.com/

2. Lilypad.
http://www.arduino.cc/en/Main/ArduinoBoardLilyPad.

3. makezine.com: Controller Kit.
http://makezine.com/controller/

4. GAINER. http://gainer.cc/

5. LEGO.com MINDSTORMS NXT Home.
http://mindstorms.lego.com/

 6. PicoCricket – Invention kit that integrates art and
technology. http://www.picocricket.com/

7. LogoChip.
http://www.wellesley.edu/Physics/Rberg/logochip/

8. SunSPOTWorld - Home.
http://www.sunspotworld.com/

9. HCI at Stanford University: d.tools.
http://hci.stanford.edu/research/dtools/

10. Arduino. http://www.arduino.cc/

11. Fritzing. http://fritzing.org/

 5

12. Modkit. http://www.modk.it/

13. Amici. http://dimeb.informatik.uni-
bremen.de/eduwear/?cat=4

14. Resnick, M., Maloney, J., Monroy-Hernández, A.,
Rusk, N., and Eastmond, E. Scratch: Programming for
Everyone. Communications of the ACM, 2009.

15. Catenary - Scratch Connections.
http://scratchconnections.wik.is/User:Chalkmarrow/Cat
enary

